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Relativistic Nonlinear Physics of the Lower

Transversal Spaces and Consequences

Milan R. Tasković

Abstract. In this paper we introduced the fundamental elements of a new
relativistic physics for the lower transversal spaces. The classical Einstein’s
theory (physics) of the upper transversal spaces is linear via Lorentz’s trans-
formations. On the other hand, the physics of the lower transversal spaces is
nonlinear via the nonlinear transformations. Also, for the upper transversal
spaces, as and Einstein’s physics, is essential that the ”live” is finite , but in
the lower transversal spaces the ”live” is infinite. This is a result (fact) of
the deepest connection between new nonlinear physics and the geometry of the
lower transversal spaces. The relativistic physics and the new nonlinear physics
are essential different, but the equation for Energy in the form E = mc2 is in
the same in both physics!

1. Introduction and history

It is well known that Einstein’s theory of relativity has been developed in two
fundamental papers, which appeared during the years 1905 (special theory of
relativity) and 1916 (general theory of relativity). The special theory of relativity
begins with the principle of relativity in form: All physical processes have the

same form for all inertial systems.
The general theory of relativity represents an extension of Newton’s theory

of gravity to arbitrary systems of reference. It represents the deepest known
connection between physics and mathematics in form: Physical interactions can

be reduced to geometrical properties.
Because the velocity of light is constant, a change of space and time between

inertial systems is given by Lorentz’s transformations. This can be achieved
by formulating these laws as geometrical laws for Minkowski’s uncurved four-
dimensional space-time of suitable manifold. In general this is connection with
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the metrical Fréchet’s spaces in 1905 and further general with the upper transver-
sal spaces of Tasković in 1998 and 2005.

The possibility of defining such notions as limit and continuity in an arbitrary
set is an idea which undoubtedly was first put forward by M. Fréchet in 1904, and
developed by him in his famous thesis in 1906.

The simplest and most fruitful method which be proposed for such definitions
was the introduction of the notion of distance.

In connection with this, first, in Tasković [4] we introduced the concept of
transversal (upper and lower) spaces as a natural extension of Fréchet’s Kurepa’s
and Menger’s spaces.

Let X be a nonempty set. The function ρ : X × X → R
0
+ := [0,+∞) is called an

upper transverse on X (or upper transversal) iff: ρ[x, y] = ρ[y, x], ρ[x, y] = 0 if and
only if x = y, and if there is function ψ : (R0

+)2 → R
0
+ such that

(As) ρ[x, y] ≤ max
{

ρ[x, z], ρ[z, y], ψ
(

ρ[x, z], ρ[z, y]
)}

for all x, y, z ∈ X. An upper transversal space is a set X together with a given upper
transverse on X. The function ψ in (As) is called upper bisection function.

For the upper transversal spaces (X, ρ), as and for Einstein’s physic, are essential the
mappings T : X → X which are bounded variation, i.e., if

∞
∑

n=0

ρ
(

Tnx, Tn+1x
)

< +∞

for arbitrary x ∈ X, where Tn(x) for n ∈ N∪ {0} is an iteration sequence of mapping T ,
in further.The upper transversal spaces are spaces are spaces with the leif finite, where
spring of spaces in the point x = 0.

On the other hand, the function ρ : X×X → [0,+∞] := R
0
+ ∪{+∞} is called a lower

transverse on X (or lower transversal) iff: ρ[x, y] = ρ[y, x], ρ[x, y] = +∞ if and only if
x = y, and if there is a lower bisection function d : [0,+∞]2 → [0,+∞] such that

(Am) ρ[x, y] ≥ min
{

ρ[x, z], ρ[z, y], d
(

ρ[x, z], ρ[z, y]
)}

for all x, y, z ∈ X. A lower transversal space is a set X together with a given lower
transverse on X. The function d in (Am) is called lower bisection function.

Let (X, ρ) be a lower transversal space and T : X → X. We shall introduce the concept
of DS-convergence in a space X; i.e., a lower transversal space X satisfies the condition
of DS-convergence (or X is DS-complete) iff: {xn}n∈N is an arbitrary sequence in X
and

∑∞
i=1

ρ[xi, xi+1] = +∞ implies that {xn}n∈N has a convergent subsequence in X.
In connection with this, a lower transversal space X satisfies the condition of orbitally

DS-convergence (or X is orbitally DS-complete) iff: {Tnx}n∈N∪{0} for x ∈ X is an
arbitrary iteration sequence in X and

∞
∑

n=0

ρ[Tnx, Tn+1x] = +∞ (for x ∈ X)

implies that {Tnx}n∈N∪{0} has a convergent subsequence in X.
We notice that in [5] Tasković proved the following statement for a class of expansion

mappings. Namely, if (X, ρ) is an orbitally DS-complete lower transversal space, if T :
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X → X, and if there exists a number q > 1 such that

(1) ρ
(

T (x), T (y)
)

≥ qρ(x, y)

for each x, y ∈ X, then T has a unique fixed point in the lower transversal space X.
Let (X, ρX) and (Y, ρY ) be two lower transversal spaces and let T : X → Y . We notice,

from Tasković [5], that T be lower transversal continuous (or lower continuous) at
x0 ∈ X iff for every ε > 0 there exists a δ > 0 such that the relation

ρX [x, x0] > δ implies ρY [T (x), T (x0)] > ε.

A typical first example of a lower transversal continuous mapping is the mapping
T : X → X with property (1). Also, the lower transverse ρ need not be lower transversal
continuous; but, for an arbitrary metric function r(x, y) the lower transverse of the form
ρ[x, y] := 1/r(x, y) is a lower transversal continuous function. For further facts on the
lower transversal continuous mappings see: Tasković [5].

In this sense, for any nonempty set S in the lower transversal space X the diameter of
S is defined by

diam(S) := inf
{

ρ[x, y] : x, y ∈ S
}

;

it is a positive real number or +∞, and A ⊂ B implies diam(B) ≤ diam(A). The relation
diam(S) = 0 holds if and only if S is a one point set. Also, for a point x0 ∈ X we have

ρ(x0, S) := sup
{

ρ[x0, s] : s ∈ S
}

.

Elements of a lower transversal space will usually be called points. Given a lower
transversal space (X, ρ), with the bisection function d and a point z ∈ X, the open ball

of center z and radius r > 0 is the set

d(B(z, r)) :=
{

x ∈ X : ρ[z, x] > r
}

.

In this sense, we have the following form of convergence on the lower transversal spaces.
The convergence xn → x as n→ ∞ in the lower transversal space (X, ρ) means that

ρ[xn, x] → +∞ as n→ ∞,

or equivalently, for every ε > 0 there exists an integer n0 such that the relation n ≥ n0

implies ρ[xn, x] > ε.
The sequence {xn}n∈N in the lower transversal space (X, ρ) is called transversal

sequence (or lower Cauchy sequence) iff for every ε > 0 there is an n0 = n0(ε) such that

ρ[xn, xm] > ε for all n,m ≥ n0.

Let (X, ρ) be a lower transversal space and T : X → X. We notice, from Tasković [5],
that a sequence of iterates {Tn(x)}n∈N in X is said to be transversal sequence if and only
if

lim
n→∞

(

diam
{

T k(x) : k ≥ n
})

= +∞.

In this sense, a lower transversal space is called lower complete iff every transversal
sequence converges.

Also, a space (X, ρ) is said to be lower orbitally complete (or lower T -orbitally com-

plete) iff every transversal sequence which is contained in the orbit O(x) := {x, Tx, T 2x, . . . }
for some x ∈ X converges in X.
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For the lower transversal spaces (X, ρ) are essential the mappings T : X → X which
are unbounded variation, i.e., if

∞
∑

n=0

ρ
(

Tnx, Tn+1x
)

= +∞

for arbitrary x ∈ X. The lower transversal spaces are spaces with life infinite, where

spring of spaces in the point x = +∞.

In this paper I give a physics and a geometry of lower transversal spaces begin-
ning with some special transformations. The physics of lower transversal spaces
is nonlinear.

Some annotations. From the property of the open bolls in the lower transver-
sal spaces we can explain the problem widening of galaxies in universe.

We notice that are the lower transversal spaces a good way and frame for
interpretation of the widening of galaxies. In this sense, let the open bolls of the
form d(B(z, rk)) for k ∈ N ∪ {0} are galaxies with the earth as a center z for all
galaxies. If the universe X is a lower transversal space, and if rk → r∞ = ∞ when
k → ∞ as on Fig.1, then we obtain a reversed process for the galaxies, i.e., we
have

(↓) X ⊃ d(B(z, r0)) ⊃ d(B(z, r1)) ⊃ · · · ⊃ d(B(z, r∞)) = ∂X,

where ∂X denoted a boundary of the universe X, which can be and a spring
point +∞, i.e., ∂X = +∞. In this sense, (↓) means that we have a widening of
galaxies (in the preceding context), but it is widening permanent in the frame of
an universe to the completion (addition) of the universe; and then once more the
same action.

Figure 1.

2. Nonlinear Transformations

Consider two ”lower” coordinate systems σ and σ′ with corresponding space
coordinates ξ = (x, y, z) and ξ′ = (x′, y′, z′), where axes x, y, z, x′, y′ and z′ are
hyperbolas. Assume also that σ and σ′ are two lower inertial systems of the
form as on Fig.2 with corresponding system times t and t′, and with the fact that
the point (0, 0, 0, 0) corresponds with the point (∞,∞,∞,∞) in the same lower
inertial systems, and reverse.
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Figure 2.

In this sense, a “lower” coordinate system σ is a lower inertial system precisely
if there exists a system time t for it such that each mass point, which is for enough
away from other masses and shielded against fields, e.g., light pressure, remains
at rest or moves rectilinearly with constant velocity.

At the beginning of this part I formulated the following three postulates in the
form:

(A) All lower inertial systems are physically equivalent, i.e., physical processes
are the same in all lower inertial systems when initial boundary conditions are
the same.

(B) (Constant velocity of light). In every lower inertial system, light travels
with the same constant velocity c in every direction.

(C) (Principle of translation). There exists a lower inertial system. If σ is a
lower inertial system, then also each lower coordinate system σ′, which is obtained
from σ by a constant translatory motion, is a lower inertial system.

Recall that we mean by a translatory motion that σ′ is not rotated compared
with σ. By a constant translatory motion of σ′ we mean a constant motion of σ′

with tespect to σ with constant velocity vector v as on Fig. 2.
(D) (Principle of time reciprocalness). In every two lower inertial systems S

and S′ the times t ∈ S and t′ ∈ S′ are as an Fig. 3 what means that if in the
system S time stream as t, then in the system S′ time stream as 1/t′; and reverse,
if in the system S′ time stream as t′, then in the system S time stream as 1/t.

t t→

S

t

S'

t'

t' 1/t'→

Figure 3.

In connection with the preceding we notice that σ′ is obtained from system σ
by a constant translatory motion with velocity v. Using a fixed rotation of σ and
σ′ and a translation of the coordinates ξ′ and t′, one can always get the following
more simple situation: At time t = 0, the two lower inertial systems σ and σ′

lower coincide, and we have t′ = +∞. Moreover, v = V e, i.e., the translation is
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performed for V > 0 along x-axis, and for V < 0 in the opposite direction as on
Fig.4.

The lower coincidence of σ and σ′ means that the origins are at time t = 0,
t′ = +∞ and reverse t = +∞, t′ = 0; and the corresponding coordinate axes have
the same direction.

σ σ' V

Figure 4.

With the choice of the coordinate axes shown in Fig.2, the plane y = 0 coincides
with the plane y′ = ∞ and the plane z = 0 with the plane z′ = ∞. Therefore,
y and y′ can be related only by expressions of the kind y = ε/y′ where ε is a
constant. Owing to the frames σ and σ′ having equal rights, the reverse relation
must hold, i.e., y′ = ε/y with the same value of the constant ε as in the first case.
This means that ε can be an arbitrary constant, i.e., can be and ε = 1.

Similar reasoning yields z = ε/z′. Now let us turn to finding the transforma-
tions for x and t. It can be seen from above that the values y and z do not depend
on x′ and t′. Hence, the values x′ and t′ cannot depend on y and z, correspond-
ingly, the values of x and t cannot depend on y′ and z′. Thus, x and t can be
nonlinear functions of only x′ and t′, from the preceding facts.

The origin of coordinates (0, 0, 0, 0) of the frame σ has the coordinate x = 0 in
the frame σ and x′ = ∞, i.e., x′ = −vt′ in the frame σ′, where v is velocity. Con-
sequently, the expression (x′ + vt′)−1 must vanish simultaneously with coordinate
x. For this to occur, the nonlinear transformation should have the form

(1) x =
γ

x′ + vt′
,

where γ is a constant. Similarly, the origin of coordinates (∞,∞,∞,∞) of the
frame σ′ has the coordinate x′ = ∞ in the frame σ′ and x = 0, i.e., x = vt in the
frame σ. Hence,

(2) x′ =
γ

x− vt
;

it follows from the frames σ and σ′ having equal rights that the constant of
proportionality in both cases should be the same.

We shall use the principle of constancy of the speed of light to find the constant
γ. Let us begin to count the time in both frames from the moment when their
origins of coordinates coincide. Assume that at the moment t = 0 and t′ = 0
a light signal is sent in the direction of the axes x and x′ that causes a flesh of
light to appear on a screen at a point with the coordinate x in the frame σ and
with the coordinate x′ in the frame σ′. This from (D) flash is described by the
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coordinate x and the moment t in the frame σ, and by the coordinate x′ and the
moment t′ in the frame σ′, and x = c/t and x′ = ct′; and x′ = c/t′, x = ct. Using
these values of x and x′ in (1) and (2), we get

c

t
=

γ

ct′ + vt′
=
γ

t′
1

c+ v
,

c

t′
=

γ

ct− vt
=
γ

t

1

c− v
;

and thus multiplication of these two equation we obtain the following equality of
the form

c2 =
γ2

c2 − v2
,

i.e., γ = c
√
c2 − v2 and γ = −c

√
c2 − v2. In further we considered the case γ > 0.

In this sense the symmetrical case γ < 0 can be considered as a technical totally
analogy. Introduction of this value for γ > 0 into equation (1) gives

(3) x =
c
√
c2 − v2

x′ + vt′
.

To obtain an equation allowing us to find the value of t according to the known
values of x′ and t′, let us delete the coordinate x from (1) and (2) and solve the
resulting expression relative to t. We obtain, substituting for γ its value, the
following form

(4) t =
−ct′

√
c2 − v2

x′(x′ + vt′)

The combination of equations y = 1/y′, z = 1/z′, (3) and (4) is called nonlinear

transformations of lower transversal spaces.
If we solve this equations of nonlinear transformations relative to the primed

quantities, we get the equations for transformation from the frame σ to σ′ in the
following form

(5) x′ =
c
√
c2 − v2

x− vt
, y′ =

1

y
, z′ =

1

z
, t′ =

−ct
√
c2 − v2

x(x− vt)
.

As it should be expected with a view to the equal rights of the frames σ and σ′,
equations (5) differ from their counterparts of nonlinear transformations only in
the sign of v.

It is easy to understand that when v < c, i.e., γ < c2, the nonlinear transfor-
mations become the same as the Galilean type ones for lower transversal spaces.
The latter thus retain their importance for speeds that are small in comparison
with the speed of light in a vacuum. See Figs. 5 and 6.

When v > c, equations of nonlinear transformations and (5) for x,t,x′ and t′

become imaginary. This agrees with the fact that motion at a speed exceeding
that of light in a vacuum is impossible. For v = c we can systems σ and σ′ return
in the origin positions.
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In connection with the preceding, for v < c the change from σ′ to σ is given by
the special nonlinear transformations in the form

(6) x =
c2

x′ + vt′
, y =

1

y′
, z =

1

z′
, t =

−c2t′
x′(x′ + vt′)

,

where c is the velocity of light. Equations (6) allow us to pass over from coordi-
nates and time measured in the frame σ′ to those measured in the frame σ.

If we solve equations (6) relative to the primed quantities, we get the equations
for transformation from the frame σ to σ′ in the form

(7) x′ =
c2

x− vt
, y′ =

1

y
, z′ =

1

z
, t′ =

−c2t
x(x− vt)

.

Figure 5. Einstein-Newton physics. Figure 6. Nonlinear physics.

3. Physics of lower transversal spaces

Length of bodies in different frames. Let us consider a rod arranged along
the x′-axis and at rest relative to the reference frame σ′. Its length in this frame,
from the facts for lower transversal spaces, is l′ = 1/|x′2 − x′1|, where x′1 and x′2
are the coordinates of the rod ends that to not change with the time t′.

The rod travels with the velocity v0 relative to the frame σ. To determine its
length in this frame, we must note the coordinates of the rod ends x1 and x2 at the
same moment t1 = t2 = t. Their ”difference” l in lower transversal spaces will give
the length of the rod measured in the frame σ. To find the relationship between
l := △x and l′ := △x′ we must take the equation of nonlinear transformations
that contains x, x′ and t, i.e., the first of the equations (5). Thus we obtain x′1
and x′2, i.e.,

△x′ =
1

|x′2 − x′1|
=

|(x2 − vt)(x1 − vt)|
c
√
c2 − v2

△x,

i.e., l′ = |(x1 − vt)(x2 − vt)|(c
√
c2 − v2)−1l. Thus, the length l′ measured in a

frame relative to which it is moving is shorter than the length l measured in the
frame relative to which the rod is at rest.

Simultaneity of events. Assume that two events occur simultaneously in the
frame σ at points with the coordinates x1 and x2 and at the moment t1 = t2 = t.
According to the last of equations (5), the moments t′1 and t′2 will correspond to
these events in the frame σ′. Examination of these equations shows that if the
events occur at different points of space (x1 6= x2) in the frame σ, then they will
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not be simultaneous in the frame σ′ (t′1 6= t′2). Then we obtain, consequently, in
different frames σ′, the difference 1/|t′2− t′1| will vary in magnitude and may differ
in sign. It must be noted that what has been said above relates only to events
between which there is no causal relationship. Causally related events will not be
simultaneous in any reference frame, and in all frames event that is the cause will
precede the effects.

Length of time. Let us suppose that two events occur at the same point of
the frame σ′. The coordinate x′1 = α and the moment t′1 correspond to the first
event in the frame, and the coordinate x′2 = α and the moment t′2 to the second
one. According to the equation (4), the moments corresponding to these events in
the frame σ will be t1 and t2 and thus, introducing the notations △t = 1/|t2 − t1|
and △t′ = 1/|t′2 − t′1|, we get the following equation in the form

(8) △t =
|(x+ vt′1)(x+ vt′2)|

c
√
c2 − v2

△t′

that relates the lengths of time between two events measures in the frames σ and
σ′.

We notice that △t′ can be interpreted as the length of time measured on a
clock that is stationary relative to the particle, or, in other words, measured on
a clock that is moving together with the particle. The time measured on a clock
moving together with a body is called the proper time of this body and is usually
denoted by the τ , and thus △t′ = △τ . Now we can thus write (8) as follows

(9) △τ =
(c
√
c2 − v2)△t

∣

∣

∣
(x+ vt′1)(x+ vt′2)

∣

∣

∣

.

where now this equation (9) relates the proper time of a body τ to the time t
read on a clock of a reference frame relative to which the body is moving with the
velocity v; this clock itself is moving relative to the body with the velocity −v.

Transformation of velocities. Let us consider the motion of a point particle.
The position of the particle in the frame σ is determined at each moment t by the
coordinates x, y, z. The expressions

vx =
dx

dt
, vy =

dy

dt
, and vz =

dz

dt

are the projections of the vector of the particle’s velocity relative (nonlinear) to
the frame σ onto the axes x, y, z. The position of the particle in the frame σ′ is
characterized at each moment t′ by the coordinates x′, y′, z′. The projections of
the vector of the particle’s velocity relative to the frame σ′ onto the axes x′, y′, z′

are determined by the expressions

v′x =
dx′

dt′
, v′y =

dy′

dt′
, and v′z =

dz′

dt′
;

and, thus, from (3) and (4) we have dx, dy, dz, and dt; and thus we get formulas
for transformations of the velocities when passing over from one reference frame
to another: vx, vy, and vz.
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It is simple to obtain expressions for velocities in the frame σ′ through the
velocities in the frame σ from (5) in the form: v′x, v′y, and v′z.

Expression in nonlinear mechanics for the Momentum. It can be shown
that the law of momentum conservation will be invariant with respect to the
nonlinear transformations at any velocities if we substitute the proper time of a
particle τ for the time t in classical expression p = mv = mdr/dt. Consequently,
the nonlinear expression for the momentum has the form p = mdr/dτ , where dr
is the displacement of the particle in the reference frame in which the momentum
p is determined, whereas the length of time dτ is determined on a clock travelling
together with the particle.

We get an expression for the momentum trough the time t of the frame od
reference relative to which the motion of bodies is being observed. By (9) we
have dτ , where v is the velocity of the body. This substitution in the proceeding
equation of the momentum yields

(10) p =
m
∣

∣

∣
(x+ vt′1)(x+ vt′2)

∣

∣

∣

c
√
c2 − v2

dr

dt
.

We notice that as in Newtonian mechanics equals the product of the mass of a
body and its velocity p = mnlv. The mass of a body, however, is not a constant
invariant quantity, but depends on the velocity according to the law

(11) mnl =
m
∣

∣

∣
(x+ vt′1)(x+ vt′2)

∣

∣

∣

c
√
c2 − v2

:=
m0c

k

√

1 − v2/c2
,

where m0 := m0(v) = c−k−2m
∣

∣

∣
(x+ vt′1)(x+ vt′2)

∣

∣

∣
, k ∈ R is an arbitrary fixed real

number, and m is an invariant mass of body.
Thus, in this interpretation, m0 is an invariant mass, where the noninvariant

mass mnl depending on the velocity. In further, mnl we will call the nonlinear

mass.
Nonlinear mechanics. As well, Newton’s second law states that the time

derivate of the momentum p of a particle (point particle) equals the resultant force
F acting on the particle. Hence, the nonlinear expression of Newton’s second law,
from p = mnlv and (11) in the lower transversal spaces, has the form

(12)
d

dt

(

m0vc
k

√

1 − v2/c2

)

= F

for fixed arbitrary k ∈ R. It should be borne in mind that the equation ma = F
cannot be used in the nonlinear case, the acceleration a and the force F , generally
speaking, being noncollinear.

To find the nonlinear expression for the energy, let us proceed in the same
way as a classical case. We shall multiply equation (12) by the displacement of a
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particle ds = v dt. The result is

d

dt

(

m0vc
k

√

1 − v2/c2

)

v dt = F ds,

where the right hand side of this equation gives the work dA done on the particle
during the time dt.

It is well known that the work of the resultant of all the forces is spent on an
increment of the kinetic energy of the perticle. Consequently, the left hand side
of the equation should be interpreted as the increment of the kinetic energy Ek

of the particle during time dt. Thus we obtain

(13) dEk =
d

dt

(

m0vc
k

√

1 − v2/c2

)

v dt = v d

(

m0vc
k

√

1 − v2/c2

)

,

and let us transform the obtained expression, bearing in mind that v dv = d(v2/2)
we have

(14) dEk = dA =
m0vc

k

(

1 − v2

c2

)3/2
dv,

for the arbitrary fixed k ∈ R.
On the other hand, from the (11), we obtain the following fact in the form

(15) dmnl =
m0vc

k

c2
(

1 − v2

c2

)3/2
dv;

and thus from (14) and (15) we obtain dEk = c2dmnl. This means that, in general
case, for the mass mnl and the energy E, we can brief that

(16) E = mnlc
2.

We notice that equality (16), on the other condition, follows from (13) by
integration of this expression. In connection with this we find that from (11) and
(16) we obtain that

(17) E =
mnlc

k+2

√

1 − v2

c2

,

for an arbitrary fixed k ∈ R; and thus, when v = 0, equation (17) transforms into
equation E = mnlc

k+2 and into equation of the form (16) for k = 0. This energy
is the internal energy of a particle not associated with its motion as a whole.

Further facts and problems. Does there exists Ether (lower ether) in the
lower transversal spaces (in the preceding sense of the nonlinear physics)?! If there
is a lower ether in the some lower transversal space, does he the same as and the
Ether in Einstein’s physics?

In connection with this, if Michelson’s experiment to make in nonlinear physics
does result the same as in the Einstein’s physics?
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Does in the nonlinear physics there is well known photo-effect as in the classical
case which is to explain Einstein in 1905? If there exists lower photo-effect (i.e.,
photo-effect in nonlinear physics), does he can the same arguments of nonlinear
physics to explain as in the classical case?

4. Asymptotic behaviour in springs of lower spaces

Lower general edges spaces. Let X be a nonempty set. The function
A : X ×X → [a, b] ⊂ R

0
+ for a < b is called a lower general edges transverse

on X (or lower general edges transversal) iff: A(x, y) = b if and only if x = y for
all x, y ∈ X.

A lower general edges transversal space (or lower general edges space) is
a set X together with a given lower general edges transverse on X.

Otherwise, the function A is called a semilower general edges transverse

on X (or semilower general edges transversal) iff: A(x, y) = b implies x = y for
all x, y ∈ X. A semilower general edges transversal space X := (X,A) is
a set X together with a given semilower general edges transverse on X. For any
nonempty set S in the lower general edges transversal space X the diameter of S
is defined as

diam(S) := inf
{

A(x, y) : x, y ∈ S
}

;

it is a real number in [a, b], A ⊂ B implies diam(B) 6 diam(A). The relation
diam(S) = b holds if and only if S is a one point set.

Elements of a lower general edges transversal space will usually be called points.
Given a lower general edges transversal space X := (X,A) and a point z ∈ X,
the open ball of center z and radius r > 0 is the set

B(z, r) :=
{

x ∈ X : A(z, x) > b− r
}

.

The convergence xn → x as n→ ∞ in the lower general edges transversal space
X := (X,A) means that

A(xn, x) → b as n→ ∞,

or equivalently, for every ε > 0 there exist an integer n0 such that the relation
n > n0 implies A(xn, x) > b− ε.

The sequence {xn}n∈N in the lower general edges transversal space X := (X,A)
is called lower transversal sequence (or lower Cauchy sequence) iff for every
ε > 0 there is an n0 = n0(ε) such that

A(xn, xm) > b− ε for all n,m > n0.

Let X := (X,A) be a lower general edges transversal space and T : X → X.
We notice, from Ta s k o v i ć [5], that a sequence of iterates {Tn(x)}n∈N in X is
said to be lower transversal sequence if and only if

lim
n→∞

(

diam{T k(x) : k > n}
)

= b.

In this sense, a lower general edges transversal space is called lower complete

iff every lower transversal sequence converges.
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Also, a space X := (X,A) is said to be lower orbitally complete (or lower

T -orbitally complete) iff every lower transversal sequence which is contained in
O(x) for some x ∈ X converges in X.

A function f mapping X into the reals is T -orbitally upper semicontinuous

at p ∈ X iff {xn}n∈N is a sequence in O(x) and xn → p (n → ∞) implies that
f(p) > lim. sup f(xn).

Let X := (X,A) be a lower general edges transversal space. A mapping T :
X → X is said to be lower general edges contraction if there exists an
0 6 λ < 1 such that

(Le) A
(

T (x), T (y)
)

> λA(x, y) + b(1 − λ)

for all points x, y ∈ X. For further facts on the lower general edges contractions
see: T a s k o v i ć [5].

Let (X,AX) and (Y,AY ) be two lower general edges transversal spaces and let
T : X → Y . In order, we notice from T a s k o v i ć [5], that T be lower general

edges continuous at x0 ∈ X iff for every ε > 0 there exists a δ > 0 such that
for every x ∈ X the following relation holds that

AX(x0, x) > b− δ implies AY

(

T (x0), T (x)
)

> b− ε.

A typical first example of a lower general edges continuous mapping is the
lower general edges contraction on the lower general edges transversal space X :=
(X,A). For the further facts on the lower general edges continuous mappings see:
T a s k o v i ć [5].

Let X be a nonempty set, T : X → X, and let A : X × X → [a, b] ⊂ R
0
+ for

a < b be a given function. We shall introduce the concept of lower general edges
TCS-convergence in a space X, i.e., a general edges transversal space X := (X,A)
satisfies the condition of lower general edges TCS-convergence iff x ∈ X
and if A(Tnx, Tn+1x) → b (n → ∞) implies that {Tn(x)}n∈N has a convergent
subsequence.

Theorem 1. Let T be a mapping of semilower general edges space X := (X,A)
into itself, where X satisfies the condition of lower general edges TCS-convergence.

Suppose that for all x, y ∈ X there exist a sequence of nonnegative real functions

{αn(x, y)}n∈N such that αn(x, y) → b (n → ∞) and positive integer m(x, y) such

that

(D) A(Tn(x), Tn(y)) > αn(x, y) for all n > m(x, y),

where A : X × X → [a, b] ⊂ R
0
+ for a < b. If x 7→ A(x, T (x)) is a T -orbitally

upper semicontinuous function or T is orbitally continuous, then T has a unique

fixed point ξ ∈ X and Tn(x) → ξ (n→ ∞) for each x ∈ X.

Proof. For y = T (x) from (D) we have that A(Tnx, Tn+1x) > αn(x, Tx) for
all n > m(x, Tx)), and thus we obtain that A(Tnx, Tn+1x) → b (n → ∞).
This implies (from lower general edges TCS-convergence) that the sequence of
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iterates {Tn(x)}n∈N has a convergent subsequence {Tn(i)(x)}i∈N with the limit
point ξ ∈ X. Since x 7→ A(x, T (x)) is T orbitally upper semicontinuous, we get

A(ξ, T (ξ)) > lim sup
i→∞

A(Tn(i)x, Tn(i)+1x) = lim sup
n→∞

A(Tnx, Tn+1x) = b,

which implies that A(ξ, T (ξ)) = b, i.e., ξ = T (ξ). On the other hand, if T is
orbitally continuous the proof of previous fact is trivial. We complete the proof
by showing that T can have at most one fixed point. Indeed, if we suppose that
ξ 6= η were two fixed points, then from (D) we have

A(ξ, η) = A(Tn(ξ), Tn(η)) > αn(ξ, η) for every n > m(ξ, η);

taking limits as n → ∞ we obtain a contradiction. Thus we obtain that ξ = η,
i.e., T has a unique fixed point in X. The proof is complete. �

Applications of Theorem 1. In connection with the preceding facts we have
the following two “asymptotic” statements for existence of a unique fixed point
as applications of Theorem 1 on lower general edges transversal spaces.

Corollary 1. Let X := (X, ρ), with the continuous general edges transverse ρ, be

a lower general edges complete lower general edges transversal space, T : X → X
is a continuous function, and ϕn : [a, b] → [a, b] for n ∈ N sequence of continuous

functions such that for every n ∈ N satisfying

ρ [Tn(x), Tn(y)] > ϕn (ρ[x, y]) for all x, y ∈ X;

and assume also that there exists a function ϕ : [a, b] → [a, b] such that for any

t ∈ [a, b), ϕ(t) > t, ϕ(t) = b iff t = b, and ϕn → ϕ (n → ∞) uniformly on the

range of ρ. Then T has a unique fixed point in X.

Corollary 2. Let X := (X, ρ), with the continuous general edges transverse ρ, be

a lower general edges complete lower general edges transversal space, T : X → X
is a continuous function, and ϕn : [a, b] → [a, b] for n ∈ N sequence of continuous

functions such that for every n ∈ N satisfying

ρ [Tn(x), Tn(y)] >

> min {ϕn(ρ[x, y]), ϕn(ρ[x, Tx]), ϕn(ρ[y, Ty]), ϕn(ρ[x, Ty]), ϕn(ρ[y, Tx])}
for all x, y ∈ X; and assume also that there exists function ϕ : [a, b] → [a, b]
such that for any t ∈ [a, b), ϕ(t) > t, ϕ(t) = b iff t = b, and ϕn → ϕ (n → ∞)
uniformly on the range of ρ. Then T has a unique fixed point in X.

Further applications of Theorem 1. In further we give the following examples
of Theorem 1 as some examples of lower general edges transversal spaces.

Example 1. (Metric spaces). A fundamental first example of lower general edges transversal
space is a metric space. Indeed, if (X, q) is a metric space, then for the lower general edges
transverse ρ : X × X → [a, b] ⊂ R

0
+ for a < b defined by

ρ[x, y] =
(a − b)q[x, y]

1 + q[x, y]
+ b
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for all x, y ∈ X we have that (X, ρ) is an example of a lower general edges transversal space. In
general, every metric space is an example of a lower general edges transversal space.

Example 2. (Lower probabilistic spaces). A mapping F : R → R
0
+ is called a left dis-

tribution function if it is nondecreasing, left-continuous with inf F = 0 and sup F = 1. We
will denote by L the set of all left distribution functions. We shall denote the left distribution
function L(p, q) by Fp,q(x), whence Fp,q(x) will denote the value of Fp,q at x ∈ R.

An example of lower general edges transversal space is a lower probabilistic space which
is a nonempty set X together with the functions Fp,q(x) with the following properties: Fp,q(x) =
Fq,p(x), Fp,q(0) = 0,

(18) Fp,q(x) = 1 for x > 0 if and only if p = q,

and if there is a nondecreasing functions τ : [0, 1]2 → [0, 1] with the property τ(t, t) > t for all
t ∈ [0, 1] such that

(Nm) Fp,q(x + y) > τ(Fp,r(x), Fr,q(y))

for all p, q, r ∈ X and for all x, y > 0. Then, from (18), we immediately obtain that every lower
probabilistic space, for ρ[p, q] = Fp,q(x) : X × X → [0, 1] is a lower general edges transversal
space.

Example 3. (Lower parametric transversal spaces). In connection with the preceding facts,

the function N : X × X × R → [a, b] ⊂ R
0
+ for a < b is called a lower parametric transverse

on X (or a lower parametric transversal) iff: for some c ∈ R
0
+ is N(u, v, t) = b for every t > c if

and only if u = v, and limn→∞ N(u, v, xn) = b for arbitrary nondecreasing sequence {xn}n∈N in

[c, +∞) with xn → +∞ (n → ∞).

A transversal lower parametric space is a set X together with a given
lower parametric transverse N : X ×X × R → [a, b] ⊂ R

0
+ for a < b in notation

X := (X,N). De facto, every transversal lower parametric space X := (X,N), for
A = N , is a lower general edges transversal space. For this spaces the following
“asymptotic” statement holds.

Corollary 3. Let X := (X,N) be a transversal lower parametric space with the

continuous lower parametric transverse, T : X → X is a continuous function,

and X with the condition of lower general edges TCS-convergence. Suppose that

there exists a function ϕ : [c,+∞) → [c,+∞) for some c ∈ R satisfying ϕ(t) > t
for every t > c and

(As) lim
n→∞

ϕn(t) = +∞ for every t > c,

and such that

(A) N
(

Tn(x), Tn(y), t
)

> N
(

x, y, ϕn(t)
)

for every n ∈ N,

for every t > c, and for all x, y ∈ X. Then T has a unique fixed point in X.

Proof. (Application of Theorem 1).
We define a function A : X×X → [a, b] ⊂ R

0
+ for a < b by A(u, v) := N(u, v, t)

and define a sequence of functions {αn(u, v)}n∈N by αn(u, v) := N(u, v, ϕn(t)).
Thus αn(u, v) → limn→∞N(u, v, ϕn(t)) = b as n → ∞ as in Theorem 1. Also,

x 7→ A(x, Tx) := N(x, Tx, t) is T -orbitally upper semicontinuous, because T
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and N are continuous. Since A(u, v) := N(u, v, t) = b implies u = v for every
t > c, and since X satisfies the condition of lower general edges TCS-convergence,
applying Theorem 1 we obtain that T has a unique fixed point in X. The proof
is complete. �

We notice that the following “asymptotic” statement holds which is as a special
case of the preceding Corollary 3.

Corollary 4. Let X := (X,N) be a transversal lower parametric space with the

continuous lower parametric transverse, T : X → X is a continuous function, and

X with the condition of lower general edges TCS-convergence. Suppose that there

exists an increasing continuous function ϕ : [c,+∞) → [c,+∞) for some c ∈ R

satisfying ϕ(t) < t for every t ∈ [c,+∞) such that

(B’) N
(

Tn(x), Tn(y), ϕn(t)
)

> N(x, y, t)

for every n ∈ N, for all x, y ∈ X and for every t > c. Then T has a unique fixed

point in X.

Proof. Since for the function ϕ : [c,+∞) → [c,+∞) for some c ∈ R there is the
inverse function ϕ−1 : [c,+∞) → [c,+∞) with the property (As), thus from (B’)
we obtain a form of the inequality (A) in the form of the following inequality as

N
(

Tn(x), Tn(y), t
)

> N
(

x, y, ϕ−n(t)
)

for n ∈ N

and for all x, y ∈ X. Thus, applying Corollary 3 we obtain this statement as a
consequence. The proof is complete. �

An essential remark. We notice that the lower parametric transversal spaces

are, de facto, also the lower general edges transversal spaces.

The lower spring transversal spaces. In connection with the preceding, we
shall introduce the concept of lower spring transversal space. In this sense, the
function A : X × X → [0,+∞] := R

0
+ ∪ {+∞} is called a lower spring tran-

sverse on a nonempty set X (or lower spring transversal) iff: A(x, y) = +∞ if
and only if x = y for all x, y ∈ X.

A lower spring transversal space X := (X,A) is a nonempty set X together
with a given lower spring transverse A on X.

Otherwise, the function A is called a semilower spring transverse on a
nonempty set X iff: A(x, y) = +∞ implies x = y for all x, y ∈ X. A semilower

spring transversal space X := (X,A) is a nonempty set X together with a
given semilower spring transverse A on X.

For any nonempty set S in the lower spring transversal space X := (X,A) the
trs.diameter of S is defined as

trs.diam(S) := inf
{

A(x, y) : x, y ∈ S
}

;

where Y ⊂ B implies trs.diam(B) 6 trs.diam(Y ). The relation trs.diam(S) =
+∞ holds if and only if S is a one point set.
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Elements of a lower spring transversal space will usually be called points. Given
a lower spring transversal space X := (X,A), and a point z ∈ X, the open ball

of center z and radius r > 0 is the set

A(B(z, r)) =
{

x ∈ X : A(z, x) > r
}

.

On the other hand, from Ta s k o v i ć [5], the lower spring convergence xn → x
as n→ ∞ in the lower spring transversal space X := (X,A) means that

A(xn, x) → +∞ as n→ ∞,

or equivalently, for every ε > 0 there exist an integer n0 such that the relation
n > n0 implies A(xn, x) > ε.

The sequence {xn}n∈N in the lower spring transversal space X := (X,A) is
called lower spring transversal sequence (or lower spring Cauchy sequence)
iff for every ε > 0 there is an n0 = n0(ε) such that

A(xn, xm) > ε for all n,m > n0.

Let X := (X,A) be a lower spring transversal space and T : X → X. We
notice, from Ta s k o v i ć [5], that a sequence of iterates {Tn(x)}n∈N in X is said
to be lower spring transversal sequence if and only if

lim
n→∞

(

trs.diam{T k(x) : k > n}
)

= +∞.

In this sense, a lower spring transversal space is called lower spring complete

iff every lower spring transversal sequence lower spring converges.
Also, a space (X, ρ) is said to be lower spring orbitally complete (or lower

spring T -orbitally complete) iff every lower spring transversal sequence which in
contained in O(x) := {x, Tx, T 2(x), . . .} for some x ∈ X lower spring converges
in X.

Annotation 1. We notice that in 1995 Ta s k o v i ć proved the following state-
ment for a class of expansion mappings. Namely, if X := (X,A) is a lower spring
T -orbitally complete lower spring transversal space, if T : X → X, and if there
exists a number q > 1 such that

A
(

T (x), T (y)
)

> qA(x, y)(19)

for each x, y ∈ X, then T has a unique fixed point in the lower spring transversal
space X.

Annotation 2. Let X := (X,AX) and Y := (Y,AY ) be two lower spring
transversal spaces and let T : X → Y . We notice, from: T a s k o v i ć [5], that T
be lower spring continuous at x0 ∈ X iff for every ε > 0 there exists a δ > 0
such that for every x ∈ X the following relation holds as

AX(x, x0) > δ implies AY (T (x), T (x0)) > ε.

A typical first example of a lower spring continuous mapping is the mapping
T : X → X with property (19). For further facts on the lower spring continuous
mappings see: T a s k o v i ć [5].
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Asymptotic contractions on lower spring transversal spaces. Let X be
a nonempty set, T : X → X, and let A : X×X → R

0
+∪{+∞} be a given function.

We shall introduce the concept of lower spring TCS-convergence in a space X, i.e.,
a lower spring transversal space X := (X,A) satisfies the condition of lower

spring TCS-convergence iff x ∈ X and if A(Tnx, Tn+1x) → +∞ (n → ∞)
implies that {Tn(x)}n∈N has a convergent subsequence.

Theorem 2. Let T be a mapping of lower spring transversal space X := (X,A)
into itself, where X satisfies the condition of lower spring TCS-convergence. Sup-

pose that for all x, y ∈ X there exist a sequence of nonnegative real functions

{αn(x, y)}n∈N such that αn(x, y) → +∞ (n → ∞) and positive integer m(x, y)
such that

(D) A(Tn(x), Tn(y)) > αn(x, y) for all n > m(x, y),

where A : X × X → R
0
+ ∪ {+∞}. If x 7→ A(x, T (x)) is a T -orbitally upper

semicontinuous function or T is orbitally continuous, then T has a unique fixed

point ξ ∈ X and Tn(x) → ξ (n→ ∞) for each x ∈ X.

The proof of this statement is totally analogous with the preceding proof of
Theorem 1 on the semilower general edges space. Thus the proof of this result we
omit.
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[2] A. Einstein, Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?, Ann. Physik,
18 (1905), 639–641.

[3] A. Einstein, Die Grundlagen der allgemeinen Relativitätstheorie, Ann. Physik, 49 (1916),
769–822.
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